Sales Toll Free No: 1-855-666-7446

How to Solve Monomials?

TopMonomials can be defined as expression which contains a single term or one term only. Here we will see how to solve monomials. We are first talking about the addition of the monomials. When we add two monomials we need to simply check that two monomials are like or unlike. So we will simply add the coefficients of like terms and in case two terms are unlike the numerical coefficients are not added. So if we add 4x2 and 5x, then we get the result 4x2 + 5x.
On another hand if we have to add two terms 5x3 and (- 3x3). So we observe that two terms are like and we get the result as: 5x3 + (- 3x3) = 2x3.
In same way we say that subtraction of two monomials can also be done. For this we will proceed in following way: Subtract 3x2 from - 8x2. So we will write above statement as follows: - 8x2 – 3x2 = - 11x2.
On other hand if two terms are unlike terms, we will simply write two terms as the difference and the coefficient of two terms that are not actually subtracted in such cases. Example: Subtract 3x from 6y can be written as 6y – 3x.
Now we will look at how to find the product of the two monomials say 2x and 5y. Here the numerical coefficient of two terms is multiplied and variables are multiplied. Thus we will get 2x * 5y = (2 * 5) * x * y.
= 10xy
Also we get 2x2 * 4x2 = (2 * 4) x2 * x2 = 8 x (2 + 2),
= 8 x 4.